18.152 Midterm assignment solutions

Proof of Problem 1. u(z) = (1 — |z|?) € C>®(Q) satisfies Au = —1 in Q
and v = 0 on 0f). Hence, the Green’s representation formula implies the
desired result. O

Proof of Problem 4. By Theorem 3, we have

(1) i) — we(x) = /Q (pe — 1)y, (x — 1) F(y)dy
(2) - / (pe — 1)y (2 — ) F(1)dy.
Bac(z)

Since |®,,(z — y)| < C1|x — y|~!, we have

2¢ 2w
(3) lui — we| < Cg/ |z —y| tdy = Cg/ / drdf = Cse.
BQe(I) 0 0

Next, we have

@ ) == [ 2 [l -] () - )y

(5) + [ (smetan) fa)dy

(0 ~ 1) [ s (oo ) ota =) do

To reformulate the last integral, we observe

(7) o (pe(,y) - ®(x — y)) = 50 (pe(,y) 5 Bz — ).

Since pe(z, y)a%jq)(x —y) € C®(Q), Theorem 2 and p.(z,y) = 1 on 99 yield

® [ & pendea-—|a= [ [Eee-o]y@a
Hence,
(9) vy(e) = wela) = [ s [ Ve -] G6) ~ e

By using [Vp| < Ce™!, [V < Clz — y[™!, [V?®| < Clo — y| ™%, and
|f(x) — f(y)| < Clz — yl|, we have

(10) i — 2w < 04/ e o — y| "y < Cse.
J Ba(z)
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Proof of Problem 6. Everybody proved the existence. Hence, we show the
uniqueness here.

Suppose that there exists two solutions u,v € D?(Q) N CY(Q). Then,
w=u—v € D*Q)NC°Q) satisfies Aw =0 in Q and w = 0 on IN.

We define we(z) = €+ €(1 — |z|?) and claim w < w, holds in  for all
e > 0. If not, there exists a point xp € 2 such that w(xg) — we(xg) =
maxg(w — we) > 0. Then, W, = w — w, attains its maximum at the interior
point xg, and thus Aw(zg) < 0. However, Aw, = Aw — Aw, = 4e > 0.
Therefore, we have w < w, for all € > 0. Passing ¢ — 0 yields w < 0 in €.
Similarly, we obtain w > 0 in Q, and thus w = 0. ([

First proof of Problem 7. We recall ay(r) fo u(r, 0)df which sat-
isfies aq + T_lao = 0. Hence, ag = 1 + co logr for some constant ci,co. By
ao(r) > 0, we have ¢ = 0 and thus ag(r) =c¢; > 0.

Since ¢; is the average of u on each circle 9B,(0), given r > 0 there
exists some angle 6, such that u(r,6,) = ¢;. Without loss of generality, we
assume 6, = 0. Then, applying the Harnack inequality for B, /2(7", 0), we

have C5 ey < u(r,0) < Ciep holds in |9] < 1o for some C3. We apply the

same argument on BT/Q(T cos 15, 7 sin {5 ) so that we have Cy%cr < u(r,0) <
C3c; holds in 0 < [~ 10 10] We iterate this process finite times to obtain

Cy Loy < u < Cyeq on OB, (0) for some Cy which is independent of r. Namely,
we have u < C5 in R?\ {0}.

Now, we recall a,(r) = (7))~} 027T u(r,0) cos(nf)df which satisfies a!’ +
r~ta! — n?r~2a, = 0. Solving ODEs yields a,(r) = i " 4 canr”.
However |an| < C’5 holds for all » > 0 and thus a, = 0. Similarly,

by (r fo u(r, 0) sin(nf)df = 0. Therefore, u(r,8) = ap(r) =c1. O

Second proof of Problem 7. We define v : R> — R by
(11) v(y1,y2) = u(e?* cosys, €Y' sinys).

Then, we can directly compute Av = e?1 Ay = 0. Hence, v is an entire pos-
itive harmonic function. Therefore, by the Liouville theory v is a constant.
Namely, u is a constant. ([



Proof of Problem 9. Since u(z1,0) = 0, we have

o0
(12) u(rcos@,rsinf) = am () sin(mb),
m=1
where
2 ™
(13) am(r) = — / u(r cos 0,7 sin 0) sin(m@)do.
T Jo
Since u is harmonic, we have
(14) an + %a;n — T—;am =0,
and thus
(15) am (1) = bypr™ ™ + 1™,

for some constant b, ¢,,.
However, we have |u(z)| < zo < r and thus

(16) lam(r)] < 2 / rdf = 2r.
™ Jo

Hence, a1(r) = c1r and ap,(r) = 0 for m > 2. Namely,
(17) u=2crsing = 2%932.

Since |u| < x9, there exists some ¢ € [—1, 1] such that u = cxs. O

Proof of Problem 10. As like the problem set 2, by the divergence theorem
and the Holder inequality, E(t) = [, u(z,t)dx (where Q = (—1,1)") satisfies

-1
(18) E’:/utdaz:/Au—i—qu:E:/uzde (/ dx) E? = E2.
Q Q Q Q

Suppose that E(T) < 0 holds at some T' € R. Then, E(t) < E(T) < 0 for
all t < T. Hence, we can divide (18) by E? to obtain —(E~!) > 1fort <T.
This implies

T T
(19) —EYT)=-E'(t) —/ (E~Y)(s)ds >/ ds =T —t.
t t
Passing t — —oo yields a contradiction, namely E(t) > 0 for all ¢t € R.

Next, we suppose E(T) > 0 holds at some T' € R. Then, E(t) > E(T) > 0
for all t > T. Hence, we can divide (18) by E? to obtain —(E~1)’ > 1 for
t > T. This implies

(20) ENT)=E"1) - /t(El)’(s)ds > /t ds=1t—T.

T T
Passing ¢t — oo yields a contradiction, namely E(t) < 0 for all ¢t € R.



In conclusion, E(t) = 0 holds for all t € R. Hence, (18) implies

(21) 0=F = / u’dz,
Q

and therefore v = 0 in €. Since u is periodic, u = 0 in R™ x R. O

First proof of Problem 11. Let K = sup+/f and given ¢ > 0 define

(22) we(z) = u(z) + L(K + €)(1 + € — |2]?).

We claim that we > 0 holds in B;(0). If not, there exists g € B;(0) such
that inf w. = we(zp), because we = %(K +€)e > 0 on 0B1(0).

Since V2u(zp) is a symmetric matrix, there exist two unit orthogonal
eigenvectors vy, v and corresponding eigenvalues A1, Ao. In particular, the
strict convexity implies A1, Ao > 0. Since w, attains its minimum at the
interior point zg, we have

(23) 0 <ol V2we(zo)v; = v (VQu(xo) —(K+el)vi=X— (K +e),

for each ¢ = 1,2, where [ is the identity matrix. This yields a contradiction
as follows.

(24) f(zo) = det(V3u)(z0) = Mg > (K 4 €)? > K? = sup f.

Namely, we > 0 holds, and thus passing ¢ — 0 complete the proof. (]

Second proof of Problem 11. We recall w. and its interior maximum point
xo in the first proof. Since V2w,(xg) is semi-positive definite, we have

(25) 0 > det(V2we(z0)) = det(V3u(xo) — (K + €)I)
(26) = det(VZu(wo)) — (K + €)Au(zg) + (K + €)%

On the other hand, we have 1Au > (det Vzu)% = +/f. Hence,

(27) 0> f(xo) — 2/F@) (K + ) + (K +¢)> = (K + ¢~ /F(a0))? = &

Namely, we have we > 0 by the contradiction above.
O
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Proof of Problem 12. Without loss of generality, we assume  C Bpr(0) \
B1(0). We recall the heat kernel

n _laf?
(28) K(x,t) = (4mt) 2 4t ,
which is continuous in R™ x [0,77]\ (0,0), K(x,0) =0 for  # 0, and K > 0
for t > 0. By the continuity, there exists some constant M such that
(29) M = sup K(z,t).

Qx[0,T)

On the other hand, g > 0 on <) implies that there exists some € > 0 such
that infgng = €. Hence, v(x,t) = eM 'K (z,t) satisfies v < u on 9,Q7.
Therefore, by the (weak) maximum principle we have v > v in Qp. In
particular, we have v = eM ‘v > 0 for t > 0, and therefore v > 0 for
t > 0. O



