18.152 Midterm assignment solutions

Proof of Problem 1. $u(x)=\frac{1}{4}\left(1-|x|^{2}\right) \in C^{\infty}(\bar{\Omega})$ satisfies $\Delta u=-1$ in $\bar{\Omega}$ and $u=0$ on $\partial \Omega$. Hence, the Green's representation formula implies the desired result.

Proof of Problem 4. By Theorem 3, we have

$$
\begin{align*}
u_{i}(x)-w_{\epsilon}(x) & =\int_{\Omega}\left(\rho_{\epsilon}-1\right) \Phi_{x_{i}}(x-y) f(y) d y \tag{1}\\
& =\int_{B_{2 \epsilon}(x)}\left(\rho_{\epsilon}-1\right) \Phi_{x_{i}}(x-y) f(y) d y
\end{align*}
$$

Since $\left|\Phi_{x_{i}}(x-y)\right| \leq C_{1}|x-y|^{-1}$, we have

$$
\begin{equation*}
\left|u_{i}-w_{\epsilon}\right| \leq C_{2} \int_{B_{2 \epsilon}(x)}|x-y|^{-1} d y=C_{2} \int_{0}^{2 \epsilon} \int_{0}^{2 \pi} d r d \theta=C_{3} \epsilon \tag{3}
\end{equation*}
$$

Next, we have

$$
\begin{align*}
\frac{\partial}{\partial x_{j}} w_{\epsilon}(x)= & -\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{i}} \Phi(x-y)\right](f(y)-f(x)) d y \tag{4}\\
& +\int_{\Omega}\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi(x, y)\right) f(y) d y \\
& -f(x) \int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{i}} \Phi(x-y)\right] d y
\end{align*}
$$

To reformulate the last integral, we observe

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left(\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{j}} \Phi(x-y)\right)=\frac{\partial}{\partial y_{j}}\left(\rho_{\epsilon}(x, y) \frac{\partial}{\partial y_{j}} \Phi(x-y)\right) . \tag{7}
\end{equation*}
$$

Since $\rho_{\epsilon}(x, y) \frac{\partial}{\partial y_{j}} \Phi(x-y) \in C^{\infty}(\bar{\Omega})$, Theorem 2 and $\rho_{\epsilon}(x, y)=1$ on $\partial \Omega$ yield

$$
\begin{equation*}
\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{i}} \Phi(x-y)\right] d y=\int_{\partial \Omega}\left[\frac{\partial}{\partial y_{i}} \Phi(x-\sigma)\right] \nu_{j}(\sigma) d \sigma \tag{8}
\end{equation*}
$$

Hence,
(9) $v_{i j}(x)-\frac{\partial}{\partial x_{j}} w_{\epsilon}(x)=\int_{B_{2 \epsilon}(x)} \frac{\partial}{\partial x_{j}}\left[\left(\rho_{\epsilon}-1\right) \frac{\partial}{\partial x_{i}} \Phi(x-y)\right](f(y)-f(x)) d y$.

By using $\left|\nabla \rho_{\epsilon}\right| \leq C \epsilon^{-1},|\nabla \Phi| \leq C|x-y|^{-1},\left|\nabla^{2} \Phi\right| \leq C|x-y|^{-2}$, and $|f(x)-f(y)| \leq C|x-y|$, we have

$$
\begin{equation*}
\left|v_{i j}-\frac{\partial}{\partial x_{j}} w_{\epsilon}\right| \leq C_{4} \int_{B_{2 \epsilon}(x)} \epsilon^{-1}+|x-y|^{-1} d y \leq C_{5} \epsilon . \tag{10}
\end{equation*}
$$

Proof of Problem 6. Everybody proved the existence. Hence, we show the uniqueness here.

Suppose that there exists two solutions $u, v \in D^{2}(\Omega) \cap C^{0}(\bar{\Omega})$. Then, $w=u-v \in D^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies $\Delta w=0$ in Ω and $w=0$ on $\partial \Omega$.

We define $w_{\epsilon}(x)=\epsilon+\epsilon\left(1-|x|^{2}\right)$ and claim $w \leq w_{\epsilon}$ holds in Ω for all $\epsilon>0$. If not, there exists a point $x_{0} \in \Omega$ such that $w\left(x_{0}\right)-w_{\epsilon}\left(x_{0}\right)=$ $\max _{\bar{\Omega}}\left(w-w_{\epsilon}\right)>0$. Then, $\hat{w}_{\epsilon}=w-w_{\epsilon}$ attains its maximum at the interior point x_{0}, and thus $\Delta \hat{w}_{\epsilon}\left(x_{0}\right) \leq 0$. However, $\Delta \hat{w}_{\epsilon}=\Delta w-\Delta w_{\epsilon}=4 \epsilon>0$. Therefore, we have $w \leq w_{\epsilon}$ for all $\epsilon>0$. Passing $\epsilon \rightarrow 0$ yields $w \leq 0$ in $\bar{\Omega}$. Similarly, we obtain $w \geq 0$ in $\bar{\Omega}$, and thus $w=0$.

First proof of Problem 7. We recall $a_{0}(r)=(2 \pi)^{-1} \int_{0}^{2 \pi} u(r, \theta) d \theta$ which satisfies $a_{0}^{\prime \prime}+r^{-1} a_{0}^{\prime}=0$. Hence, $a_{0}=c_{1}+c_{2} \log r$ for some constant c_{1}, c_{2}. By $a_{0}(r)>0$, we have $c_{2}=0$ and thus $a_{0}(r)=c_{1}>0$.

Since c_{1} is the average of u on each circle $\partial B_{r}(0)$, given $r>0$ there exists some angle θ_{r} such that $u\left(r, \theta_{r}\right)=c_{1}$. Without loss of generality, we assume $\theta_{r}=0$. Then, applying the Harnack inequality for $B_{r / 2}(r, 0)$, we have $C_{3}^{-1} c_{1} \leq u(r, \theta) \leq C_{3}^{1} c_{1}$ holds in $|\theta| \leq \frac{\pi}{10}$ for some C_{3}. We apply the same argument on $B_{r / 2}\left(r \cos \frac{\pi}{10}, r \sin \frac{\pi}{10}\right)$ so that we have $C_{3}^{-2} c_{1} \leq u(r, \theta) \leq$ $C_{3}^{2} c_{1}$ holds in $\theta \leq\left[-\frac{\pi}{10}, \frac{2 \pi}{10}\right]$. We iterate this process finite times to obtain $C_{4}^{-1} c_{1} \leq u \leq C_{4} c_{1}$ on $\partial B_{r}(0)$ for some C_{4} which is independent of r. Namely, we have $u \leq C_{5}$ in $\mathbb{R}^{2} \backslash\{0\}$.

Now, we recall $a_{n}(r)=(\pi)^{-1} \int_{0}^{2 \pi} u(r, \theta) \cos (n \theta) d \theta$ which satisfies $a_{n}^{\prime \prime}+$ $r^{-1} a_{n}^{\prime}-n^{2} r^{-2} a_{n}=0$. Solving ODEs yields $a_{n}(r)=c_{1, n} r^{-n}+c_{2, n} r^{n}$. However, $\left|a_{n}\right| \leq C_{5}$ holds for all $r>0$ and thus $a_{n}=0$. Similarly, $b_{n}(r)=(\pi)^{-1} \int_{0}^{2 \pi} u(r, \theta) \sin (n \theta) d \theta=0$. Therefore, $u(r, \theta)=a_{0}(r)=c_{1}$.

Second proof of Problem 7. We define $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
v\left(y_{1}, y_{2}\right)=u\left(e^{y_{1}} \cos y_{2}, e^{y_{1}} \sin y_{2}\right) \tag{11}
\end{equation*}
$$

Then, we can directly compute $\Delta v=e^{2 y_{1}} \Delta u=0$. Hence, v is an entire positive harmonic function. Therefore, by the Liouville theory v is a constant. Namely, u is a constant.

Proof of Problem 9. Since $u\left(x_{1}, 0\right)=0$, we have

$$
\begin{equation*}
u(r \cos \theta, r \sin \theta)=\sum_{m=1}^{\infty} a_{m}(r) \sin (m \theta) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{m}(r)=\frac{2}{\pi} \int_{0}^{\pi} u(r \cos \theta, r \sin \theta) \sin (m \theta) d \theta \tag{13}
\end{equation*}
$$

Since u is harmonic, we have

$$
\begin{equation*}
a_{m}^{\prime \prime}+\frac{1}{r} a_{m}^{\prime}-\frac{m^{2}}{r^{2}} a_{m}=0 \tag{14}
\end{equation*}
$$

and thus

$$
\begin{equation*}
a_{m}(r)=b_{m} r^{-m}+c_{m} r^{m} \tag{15}
\end{equation*}
$$

for some constant b_{m}, c_{m}.
However, we have $|u(x)| \leq x_{2} \leq r$ and thus

$$
\begin{equation*}
\left|a_{m}(r)\right| \leq \frac{2}{\pi} \int_{0}^{\pi} r d \theta=2 r \tag{16}
\end{equation*}
$$

Hence, $a_{1}(r)=c_{1} r$ and $a_{m}(r)=0$ for $m \geq 2$. Namely,

$$
\begin{equation*}
u=\frac{2}{\pi} c_{1} r \sin \theta=\frac{2 c_{1}}{\pi} x_{2} . \tag{17}
\end{equation*}
$$

Since $|u| \leq x_{2}$, there exists some $c \in[-1,1]$ such that $u=c x_{2}$.

Proof of Problem 10. As like the problem set 2, by the divergence theorem and the Hölder inequality, $E(t)=\int_{\Omega} u(x, t) d x$ (where $\Omega=(-1,1)^{n}$) satisfies

$$
\begin{equation*}
E^{\prime}=\int_{\Omega} u_{t} d x=\int_{\Omega} \Delta u+u^{2} d x=\int_{\Omega} u^{2} d x \geq\left(\int_{\Omega} d x\right)^{-1} E^{2}=E^{2} \tag{18}
\end{equation*}
$$

Suppose that $E(T)<0$ holds at some $T \in \mathbb{R}$. Then, $E(t) \leq E(T)<0$ for all $t \leq T$. Hence, we can divide (18) by E^{2} to obtain $-\left(E^{-1}\right)^{\prime} \geq 1$ for $t \leq T$. This implies

$$
\begin{equation*}
-E^{-1}(T)=-E^{-1}(t)-\int_{t}^{T}\left(E^{-1}\right)^{\prime}(s) d s \geq \int_{t}^{T} d s=T-t \tag{19}
\end{equation*}
$$

Passing $t \rightarrow-\infty$ yields a contradiction, namely $E(t) \geq 0$ for all $t \in \mathbb{R}$.
Next, we suppose $E(T)>0$ holds at some $T \in \mathbb{R}$. Then, $E(t) \geq E(T)>0$ for all $t \geq T$. Hence, we can divide (18) by E^{2} to obtain $-\left(E^{-1}\right)^{\prime} \geq 1$ for $t \geq T$. This implies

$$
\begin{equation*}
E^{-1}(T)=E^{-1}(t)-\int_{T}^{t}\left(E^{-1}\right)^{\prime}(s) d s \geq \int_{T}^{t} d s=t-T \tag{20}
\end{equation*}
$$

Passing $t \rightarrow \infty$ yields a contradiction, namely $E(t) \leq 0$ for all $t \in \mathbb{R}$.

In conclusion, $E(t)=0$ holds for all $t \in \mathbb{R}$. Hence, (18) implies

$$
\begin{equation*}
0=E^{\prime}=\int_{\Omega} u^{2} d x \tag{21}
\end{equation*}
$$

and therefore $u=0$ in Ω. Since u is periodic, $u=0$ in $\mathbb{R}^{n} \times \mathbb{R}$.

First proof of Problem 11. Let $K=\sup \sqrt{f}$ and given $\epsilon>0$ define

$$
\begin{equation*}
w_{\epsilon}(x)=u(x)+\frac{1}{2}(K+\epsilon)\left(1+\epsilon-|x|^{2}\right) \tag{22}
\end{equation*}
$$

We claim that $w_{\epsilon} \geq 0$ holds in $B_{1}(0)$. If not, there exists $x_{0} \in B_{1}(0)$ such that $\inf w_{\epsilon}=w_{\epsilon}\left(x_{0}\right)$, because $w_{\epsilon}=\frac{1}{2}(K+\epsilon) \epsilon>0$ on $\partial B_{1}(0)$.

Since $\nabla^{2} u\left(x_{0}\right)$ is a symmetric matrix, there exist two unit orthogonal eigenvectors v_{1}, v_{2} and corresponding eigenvalues λ_{1}, λ_{2}. In particular, the strict convexity implies $\lambda_{1}, \lambda_{2}>0$. Since w_{ϵ} attains its minimum at the interior point x_{0}, we have

$$
\begin{equation*}
0 \leq v_{i}^{T} \nabla^{2} w_{\epsilon}\left(x_{0}\right) v_{i}=v_{i}^{T}\left(\nabla^{2} u\left(x_{0}\right)-(K+\epsilon) I\right) v_{i}=\lambda_{i}-(K+\epsilon) \tag{23}
\end{equation*}
$$

for each $i=1,2$, where I is the identity matrix. This yields a contradiction as follows.

$$
\begin{equation*}
f\left(x_{0}\right)=\operatorname{det}\left(\nabla^{2} u\right)\left(x_{0}\right)=\lambda_{1} \lambda_{2} \geq(K+\epsilon)^{2}>K^{2}=\sup f \tag{24}
\end{equation*}
$$

Namely, $w_{\epsilon} \geq 0$ holds, and thus passing $\epsilon \rightarrow 0$ complete the proof.

Second proof of Problem 11. We recall w_{ϵ} and its interior maximum point x_{0} in the first proof. Since $\nabla^{2} w_{\epsilon}\left(x_{0}\right)$ is semi-positive definite, we have

$$
\begin{align*}
0 & \geq \operatorname{det}\left(\nabla^{2} w_{\epsilon}\left(x_{0}\right)\right)=\operatorname{det}\left(\nabla^{2} u\left(x_{0}\right)-(K+\epsilon) I\right) \tag{25}\\
& =\operatorname{det}\left(\nabla^{2} u\left(x_{0}\right)\right)-(K+\epsilon) \Delta u\left(x_{0}\right)+(K+\epsilon)^{2} \tag{26}
\end{align*}
$$

On the other hand, we have $\frac{1}{2} \Delta u \geq\left(\operatorname{det} \nabla^{2} u\right)^{\frac{1}{2}}=\sqrt{f}$. Hence,
(27) $0 \geq f\left(x_{0}\right)-2 \sqrt{f\left(x_{0}\right)}(K+\epsilon)+(K+\epsilon)^{2}=\left(K+\epsilon-\sqrt{f\left(x_{0}\right)}\right)^{2} \geq \epsilon^{2}$.

Namely, we have $w_{\epsilon} \geq 0$ by the contradiction above.

Proof of Problem 12. Without loss of generality, we assume $\Omega \subset B_{R}(0) \backslash$ $B_{1}(0)$. We recall the heat kernel

$$
\begin{equation*}
K(x, t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4 t}} \tag{28}
\end{equation*}
$$

which is continuous in $\mathbb{R}^{n} \times[0, T] \backslash(0,0), K(x, 0)=0$ for $x \neq 0$, and $K>0$ for $t>0$. By the continuity, there exists some constant M such that

$$
\begin{equation*}
M=\sup _{\Omega \times[0, T]} K(x, t) \tag{29}
\end{equation*}
$$

On the other hand, $g>0$ on $\partial \Omega$ implies that there exists some $\epsilon>0$ such that $\inf _{\partial \Omega} g=\epsilon$. Hence, $v(x, t)=\epsilon M^{-1} K(x, t)$ satisfies $v \leq u$ on $\partial_{p} Q_{T}$. Therefore, by the (weak) maximum principle we have $u \geq v$ in Q_{T}. In particular, we have $v=\epsilon M^{-1} v>0$ for $t>0$, and therefore $u>0$ for $t>0$.

