18.152 Midterm assignment solutions

Proof of Problem 1. $u(x) = \frac{1}{4}(1 - |x|^2) \in C^{\infty}(\overline{\Omega})$ satisfies $\Delta u = -1$ in $\overline{\Omega}$ and u = 0 on $\partial\Omega$. Hence, the Green's representation formula implies the desired result.

Proof of Problem 4. By Theorem 3, we have

(1)
$$u_i(x) - w_\epsilon(x) = \int_{\Omega} (\rho_\epsilon - 1) \Phi_{x_i}(x - y) f(y) dy$$

(2)
$$= \int_{B_{2\epsilon}(x)} (\rho_{\epsilon} - 1) \Phi_{x_i}(x - y) f(y) dy.$$

Since $|\Phi_{x_i}(x-y)| \le C_1 |x-y|^{-1}$, we have

(3)
$$|u_i - w_\epsilon| \le C_2 \int_{B_{2\epsilon}(x)} |x - y|^{-1} dy = C_2 \int_0^{2\epsilon} \int_0^{2\pi} dr d\theta = C_3 \epsilon.$$

Next, we have

(4)
$$\frac{\partial}{\partial x_j} w_{\epsilon}(x) = -\int_{\Omega} \frac{\partial}{\partial x_j} \left[\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_i} \Phi(x - y) \right] (f(y) - f(x)) dy$$

(5)
$$+ \int_{\Omega} \left(\frac{\partial^2}{\partial x_i \partial x_j} \varphi(x, y) \right) f(y) dy$$

(6)
$$-f(x)\int_{\Omega}\frac{\partial}{\partial x_j}\left[\rho_{\epsilon}(x,y)\frac{\partial}{\partial x_i}\Phi(x-y)\right]dy.$$

To reformulate the last integral, we observe

(7)
$$\frac{\partial}{\partial x_j} \left(\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_j} \Phi(x - y) \right) = \frac{\partial}{\partial y_j} \left(\rho_{\epsilon}(x, y) \frac{\partial}{\partial y_j} \Phi(x - y) \right).$$

Since $\rho_{\epsilon}(x,y)\frac{\partial}{\partial y_j}\Phi(x-y) \in C^{\infty}(\overline{\Omega})$, Theorem 2 and $\rho_{\epsilon}(x,y) = 1$ on $\partial\Omega$ yield

(8)
$$\int_{\Omega} \frac{\partial}{\partial x_j} \left[\rho_{\epsilon}(x,y) \frac{\partial}{\partial x_i} \Phi(x-y) \right] dy = \int_{\partial \Omega} \left[\frac{\partial}{\partial y_i} \Phi(x-\sigma) \right] \nu_j(\sigma) d\sigma.$$
Hence

dence,

(9)
$$v_{ij}(x) - \frac{\partial}{\partial x_j} w_{\epsilon}(x) = \int_{B_{2\epsilon}(x)} \frac{\partial}{\partial x_j} \left[(\rho_{\epsilon} - 1) \frac{\partial}{\partial x_i} \Phi(x - y) \right] (f(y) - f(x)) dy.$$

By using $|\nabla \rho_{\epsilon}| \leq C\epsilon^{-1}$, $|\nabla \Phi| \leq C|x-y|^{-1}$, $|\nabla^2 \Phi| \leq C|x-y|^{-2}$, and $|f(x) - f(y)| \leq C|x-y|$, we have

(10)
$$|v_{ij} - \frac{\partial}{\partial x_j} w_{\epsilon}| \le C_4 \int_{B_{2\epsilon}(x)} \epsilon^{-1} + |x - y|^{-1} dy \le C_5 \epsilon.$$

Proof of Problem 6. Everybody proved the existence. Hence, we show the uniqueness here.

Suppose that there exists two solutions $u, v \in D^2(\Omega) \cap C^0(\overline{\Omega})$. Then, $w = u - v \in D^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta w = 0$ in Ω and w = 0 on $\partial \Omega$.

We define $w_{\epsilon}(x) = \epsilon + \epsilon(1 - |x|^2)$ and claim $w \leq w_{\epsilon}$ holds in Ω for all $\epsilon > 0$. If not, there exists a point $x_0 \in \Omega$ such that $w(x_0) - w_{\epsilon}(x_0) = \max_{\overline{\Omega}}(w - w_{\epsilon}) > 0$. Then, $\hat{w}_{\epsilon} = w - w_{\epsilon}$ attains its maximum at the interior point x_0 , and thus $\Delta \hat{w}_{\epsilon}(x_0) \leq 0$. However, $\Delta \hat{w}_{\epsilon} = \Delta w - \Delta w_{\epsilon} = 4\epsilon > 0$. Therefore, we have $w \leq w_{\epsilon}$ for all $\epsilon > 0$. Passing $\epsilon \to 0$ yields $w \leq 0$ in $\overline{\Omega}$. Similarly, we obtain $w \geq 0$ in $\overline{\Omega}$, and thus w = 0.

First proof of Problem 7. We recall $a_0(r) = (2\pi)^{-1} \int_0^{2\pi} u(r,\theta) d\theta$ which satisfies $a_0'' + r^{-1}a_0' = 0$. Hence, $a_0 = c_1 + c_2 \log r$ for some constant c_1, c_2 . By $a_0(r) > 0$, we have $c_2 = 0$ and thus $a_0(r) = c_1 > 0$.

Since c_1 is the average of u on each circle $\partial B_r(0)$, given r > 0 there exists some angle θ_r such that $u(r, \theta_r) = c_1$. Without loss of generality, we assume $\theta_r = 0$. Then, applying the Harnack inequality for $B_{r/2}(r, 0)$, we have $C_3^{-1}c_1 \leq u(r, \theta) \leq C_3^1c_1$ holds in $|\theta| \leq \frac{\pi}{10}$ for some C_3 . We apply the same argument on $B_{r/2}(r \cos \frac{\pi}{10}, r \sin \frac{\pi}{10})$ so that we have $C_3^{-2}c_1 \leq u(r, \theta) \leq C_3^2c_1$ holds in $\theta \leq [-\frac{\pi}{10}, \frac{2\pi}{10}]$. We iterate this process finite times to obtain $C_4^{-1}c_1 \leq u \leq C_4c_1$ on $\partial B_r(0)$ for some C_4 which is independent of r. Namely, we have $u \leq C_5$ in $\mathbb{R}^2 \setminus \{0\}$.

Now, we recall $a_n(r) = (\pi)^{-1} \int_0^{2\pi} u(r,\theta) \cos(n\theta) d\theta$ which satisfies $a_n'' + r^{-1}a_n' - n^2r^{-2}a_n = 0$. Solving ODEs yields $a_n(r) = c_{1,n}r^{-n} + c_{2,n}r^n$. However, $|a_n| \leq C_5$ holds for all r > 0 and thus $a_n = 0$. Similarly, $b_n(r) = (\pi)^{-1} \int_0^{2\pi} u(r,\theta) \sin(n\theta) d\theta = 0$. Therefore, $u(r,\theta) = a_0(r) = c_1$. \Box

Second proof of Problem 7. We define $v : \mathbb{R}^2 \to \mathbb{R}$ by

(11)
$$v(y_1, y_2) = u(e^{y_1} \cos y_2, e^{y_1} \sin y_2).$$

Then, we can directly compute $\Delta v = e^{2y_1} \Delta u = 0$. Hence, v is an entire positive harmonic function. Therefore, by the Liouville theory v is a constant. Namely, u is a constant.

Proof of Problem 9. Since $u(x_1, 0) = 0$, we have

(12)
$$u(r\cos\theta, r\sin\theta) = \sum_{m=1}^{\infty} a_m(r)\sin(m\theta),$$

where

(13)
$$a_m(r) = \frac{2}{\pi} \int_0^{\pi} u(r\cos\theta, r\sin\theta)\sin(m\theta)d\theta.$$

Since u is harmonic, we have

(14)
$$a''_m + \frac{1}{r}a'_m - \frac{m^2}{r^2}a_m = 0,$$

and thus

(15)
$$a_m(r) = b_m r^{-m} + c_m r^m,$$

for some constant b_m, c_m .

However, we have $|u(x)| \leq x_2 \leq r$ and thus

(16)
$$|a_m(r)| \le \frac{2}{\pi} \int_0^{\pi} r d\theta = 2r.$$

Hence, $a_1(r) = c_1 r$ and $a_m(r) = 0$ for $m \ge 2$. Namely,

(17)
$$u = \frac{2}{\pi}c_1r\sin\theta = \frac{2c_1}{\pi}x_2.$$

Since $|u| \le x_2$, there exists some $c \in [-1, 1]$ such that $u = cx_2$.

Proof of Problem 10. As like the problem set 2, by the divergence theorem and the Hölder inequality, $E(t) = \int_{\Omega} u(x, t) dx$ (where $\Omega = (-1, 1)^n$) satisfies

(18)
$$E' = \int_{\Omega} u_t dx = \int_{\Omega} \Delta u + u^2 dx = \int_{\Omega} u^2 dx \ge \left(\int_{\Omega} dx\right)^{-1} E^2 = E^2.$$

Suppose that E(T) < 0 holds at some $T \in \mathbb{R}$. Then, $E(t) \leq E(T) < 0$ for all $t \leq T$. Hence, we can divide (18) by E^2 to obtain $-(E^{-1})' \geq 1$ for $t \leq T$. This implies

(19)
$$-E^{-1}(T) = -E^{-1}(t) - \int_{t}^{T} (E^{-1})'(s) ds \ge \int_{t}^{T} ds = T - t.$$

Passing $t \to -\infty$ yields a contradiction, namely $E(t) \ge 0$ for all $t \in \mathbb{R}$.

Next, we suppose E(T) > 0 holds at some $T \in \mathbb{R}$. Then, $E(t) \ge E(T) > 0$ for all $t \ge T$. Hence, we can divide (18) by E^2 to obtain $-(E^{-1})' \ge 1$ for $t \ge T$. This implies

(20)
$$E^{-1}(T) = E^{-1}(t) - \int_{T}^{t} (E^{-1})'(s) ds \ge \int_{T}^{t} ds = t - T.$$

Passing $t \to \infty$ yields a contradiction, namely $E(t) \leq 0$ for all $t \in \mathbb{R}$.

In conclusion, E(t) = 0 holds for all $t \in \mathbb{R}$. Hence, (18) implies

(21)
$$0 = E' = \int_{\Omega} u^2 dx$$

and therefore u = 0 in Ω . Since u is periodic, u = 0 in $\mathbb{R}^n \times \mathbb{R}$.

First proof of Problem 11. Let
$$K = \sup \sqrt{f}$$
 and given $\epsilon > 0$ define

(22)
$$w_{\epsilon}(x) = u(x) + \frac{1}{2}(K+\epsilon)(1+\epsilon-|x|^2).$$

We claim that $w_{\epsilon} \ge 0$ holds in $B_1(0)$. If not, there exists $x_0 \in B_1(0)$ such that $\inf w_{\epsilon} = w_{\epsilon}(x_0)$, because $w_{\epsilon} = \frac{1}{2}(K + \epsilon)\epsilon > 0$ on $\partial B_1(0)$.

Since $\nabla^2 u(x_0)$ is a symmetric matrix, there exist two unit orthogonal eigenvectors v_1, v_2 and corresponding eigenvalues λ_1, λ_2 . In particular, the strict convexity implies $\lambda_1, \lambda_2 > 0$. Since w_{ϵ} attains its minimum at the interior point x_0 , we have

(23)
$$0 \le v_i^T \nabla^2 w_{\epsilon}(x_0) v_i = v_i^T \left(\nabla^2 u(x_0) - (K+\epsilon)I \right) v_i = \lambda_i - (K+\epsilon),$$

for each i = 1, 2, where I is the identity matrix. This yields a contradiction as follows.

(24)
$$f(x_0) = \det(\nabla^2 u)(x_0) = \lambda_1 \lambda_2 \ge (K+\epsilon)^2 > K^2 = \sup f.$$

Namely, $w_{\epsilon} \geq 0$ holds, and thus passing $\epsilon \to 0$ complete the proof.

Second proof of Problem 11. We recall w_{ϵ} and its interior maximum point x_0 in the first proof. Since $\nabla^2 w_{\epsilon}(x_0)$ is semi-positive definite, we have

(25)
$$0 \ge \det(\nabla^2 w_{\epsilon}(x_0)) = \det(\nabla^2 u(x_0) - (K+\epsilon)I)$$

(26)
$$= \det(\nabla^2 u(x_0)) - (K + \epsilon)\Delta u(x_0) + (K + \epsilon)^2.$$

On the other hand, we have $\frac{1}{2}\Delta u \ge (\det \nabla^2 u)^{\frac{1}{2}} = \sqrt{f}$. Hence,

(27)
$$0 \ge f(x_0) - 2\sqrt{f(x_0)}(K+\epsilon) + (K+\epsilon)^2 = (K+\epsilon - \sqrt{f(x_0)})^2 \ge \epsilon^2.$$

Namely, we have $w_{\epsilon} \geq 0$ by the contradiction above.

Proof of Problem 12. Without loss of generality, we assume $\Omega \subset B_R(0) \setminus B_1(0)$. We recall the heat kernel

(28)
$$K(x,t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}},$$

which is continuous in $\mathbb{R}^n \times [0, T] \setminus (0, 0)$, K(x, 0) = 0 for $x \neq 0$, and K > 0 for t > 0. By the continuity, there exists some constant M such that

(29)
$$M = \sup_{\Omega \times [0,T]} K(x,t).$$

On the other hand, g > 0 on $\partial\Omega$ implies that there exists some $\epsilon > 0$ such that $\inf_{\partial\Omega} g = \epsilon$. Hence, $v(x,t) = \epsilon M^{-1}K(x,t)$ satisfies $v \leq u$ on $\partial_p Q_T$. Therefore, by the (weak) maximum principle we have $u \geq v$ in Q_T . In particular, we have $v = \epsilon M^{-1}v > 0$ for t > 0, and therefore u > 0 for t > 0.