
18.152 Midterm assignment solutions

Proof of Problem 1. u(x) = 1
4(1 − |x|2) ∈ C∞(Ω) satisfies ∆u = −1 in Ω

and u = 0 on ∂Ω. Hence, the Green’s representation formula implies the
desired result. �

Proof of Problem 4. By Theorem 3, we have

ui(x)− wε(x) =

∫
Ω

(ρε − 1)Φxi(x− y)f(y)dy(1)

=

∫
B2ε(x)

(ρε − 1)Φxi(x− y)f(y)dy.(2)

Since |Φxi(x− y)| ≤ C1|x− y|−1, we have

(3) |ui − wε| ≤ C2

∫
B2ε(x)

|x− y|−1dy = C2

∫ 2ε

0

∫ 2π

0
drdθ = C3ε.

Next, we have

∂
∂xj

wε(x) =−
∫

Ω

∂
∂xj

[
ρε(x, y) ∂

∂xi
Φ(x− y)

]
(f(y)− f(x))dy(4)

+

∫
Ω

(
∂2

∂xi∂xj
ϕ(x, y)

)
f(y)dy(5)

− f(x)

∫
Ω

∂
∂xj

[
ρε(x, y) ∂

∂xi
Φ(x− y)

]
dy.(6)

To reformulate the last integral, we observe

(7) ∂
∂xj

(
ρε(x, y) ∂

∂xj
Φ(x− y)

)
= ∂

∂yj

(
ρε(x, y) ∂

∂yj
Φ(x− y)

)
.

Since ρε(x, y) ∂
∂yj

Φ(x−y) ∈ C∞(Ω), Theorem 2 and ρε(x, y) = 1 on ∂Ω yield∫
Ω

∂
∂xj

[
ρε(x, y) ∂

∂xi
Φ(x− y)

]
dy =

∫
∂Ω

[
∂
∂yi

Φ(x− σ)
]
νj(σ)dσ.(8)

Hence,

(9) vij(x)− ∂
∂xj

wε(x) =

∫
B2ε(x)

∂
∂xj

[
(ρε − 1) ∂

∂xi
Φ(x− y)

]
(f(y)− f(x))dy.

By using |∇ρε| ≤ Cε−1, |∇Φ| ≤ C|x − y|−1, |∇2Φ| ≤ C|x − y|−2, and
|f(x)− f(y)| ≤ C|x− y|, we have

(10) |vij − ∂
∂xj

wε| ≤ C4

∫
B2ε(x)

ε−1 + |x− y|−1dy ≤ C5ε.

�
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Proof of Problem 6. Everybody proved the existence. Hence, we show the
uniqueness here.

Suppose that there exists two solutions u, v ∈ D2(Ω) ∩ C0(Ω). Then,
w = u− v ∈ D2(Ω) ∩ C0(Ω) satisfies ∆w = 0 in Ω and w = 0 on ∂Ω.

We define wε(x) = ε + ε(1 − |x|2) and claim w ≤ wε holds in Ω for all
ε > 0. If not, there exists a point x0 ∈ Ω such that w(x0) − wε(x0) =
maxΩ(w−wε) > 0. Then, ŵε = w−wε attains its maximum at the interior
point x0, and thus ∆ŵε(x0) ≤ 0. However, ∆ŵε = ∆w − ∆wε = 4ε > 0.
Therefore, we have w ≤ wε for all ε > 0. Passing ε → 0 yields w ≤ 0 in Ω.
Similarly, we obtain w ≥ 0 in Ω, and thus w = 0. �

First proof of Problem 7. We recall a0(r) = (2π)−1
∫ 2π

0 u(r, θ)dθ which sat-

isfies a′′0 + r−1a′0 = 0. Hence, a0 = c1 + c2 log r for some constant c1, c2. By
a0(r) > 0, we have c2 = 0 and thus a0(r) = c1 > 0.

Since c1 is the average of u on each circle ∂Br(0), given r > 0 there
exists some angle θr such that u(r, θr) = c1. Without loss of generality, we
assume θr = 0. Then, applying the Harnack inequality for Br/2(r, 0), we

have C−1
3 c1 ≤ u(r, θ) ≤ C1

3c1 holds in |θ| ≤ π
10 for some C3. We apply the

same argument on Br/2(r cos π
10 , r sin π

10) so that we have C−2
3 c1 ≤ u(r, θ) ≤

C2
3c1 holds in θ ≤ [− π

10 ,
2π
10 ]. We iterate this process finite times to obtain

C−1
4 c1 ≤ u ≤ C4c1 on ∂Br(0) for some C4 which is independent of r. Namely,

we have u ≤ C5 in R2 \ {0}.

Now, we recall an(r) = (π)−1
∫ 2π

0 u(r, θ) cos(nθ)dθ which satisfies a′′n +

r−1a′n − n2r−2an = 0. Solving ODEs yields an(r) = c1,nr
−n + c2,nr

n.
However, |an| ≤ C5 holds for all r > 0 and thus an = 0. Similarly,

bn(r) = (π)−1
∫ 2π

0 u(r, θ) sin(nθ)dθ = 0. Therefore, u(r, θ) = a0(r) = c1. �

Second proof of Problem 7. We define v : R2 → R by

(11) v(y1, y2) = u(ey1 cos y2, e
y1 sin y2).

Then, we can directly compute ∆v = e2y1∆u = 0. Hence, v is an entire pos-
itive harmonic function. Therefore, by the Liouville theory v is a constant.
Namely, u is a constant. �
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Proof of Problem 9. Since u(x1, 0) = 0, we have

(12) u(r cos θ, r sin θ) =
∞∑
m=1

am(r) sin(mθ),

where

(13) am(r) =
2

π

∫ π

0
u(r cos θ, r sin θ) sin(mθ)dθ.

Since u is harmonic, we have

(14) a′′m + 1
ra
′
m − m2

r2
am = 0,

and thus

(15) am(r) = bmr
−m + cmr

m,

for some constant bm, cm.
However, we have |u(x)| ≤ x2 ≤ r and thus

(16) |am(r)| ≤ 2

π

∫ π

0
rdθ = 2r.

Hence, a1(r) = c1r and am(r) = 0 for m ≥ 2. Namely,

(17) u = 2
π c1r sin θ = 2c1

π x2.

Since |u| ≤ x2, there exists some c ∈ [−1, 1] such that u = cx2. �

Proof of Problem 10. As like the problem set 2, by the divergence theorem
and the Hölder inequality, E(t) =

∫
Ω u(x, t)dx (where Ω = (−1, 1)n) satisfies

(18) E′ =

∫
Ω
utdx =

∫
Ω

∆u+ u2dx =

∫
Ω
u2dx ≥

(∫
Ω
dx

)−1

E2 = E2.

Suppose that E(T ) < 0 holds at some T ∈ R. Then, E(t) ≤ E(T ) < 0 for
all t ≤ T . Hence, we can divide (18) by E2 to obtain −(E−1)′ ≥ 1 for t ≤ T .
This implies

(19) −E−1(T ) = −E−1(t)−
∫ T

t
(E−1)′(s)ds ≥

∫ T

t
ds = T − t.

Passing t→ −∞ yields a contradiction, namely E(t) ≥ 0 for all t ∈ R.

Next, we suppose E(T ) > 0 holds at some T ∈ R. Then, E(t) ≥ E(T ) > 0
for all t ≥ T . Hence, we can divide (18) by E2 to obtain −(E−1)′ ≥ 1 for
t ≥ T . This implies

(20) E−1(T ) = E−1(t)−
∫ t

T
(E−1)′(s)ds ≥

∫ t

T
ds = t− T.

Passing t→∞ yields a contradiction, namely E(t) ≤ 0 for all t ∈ R.
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In conclusion, E(t) = 0 holds for all t ∈ R. Hence, (18) implies

(21) 0 = E′ =

∫
Ω
u2dx,

and therefore u = 0 in Ω. Since u is periodic, u = 0 in Rn × R. �

First proof of Problem 11. Let K = sup
√
f and given ε > 0 define

(22) wε(x) = u(x) + 1
2(K + ε)(1 + ε− |x|2).

We claim that wε ≥ 0 holds in B1(0). If not, there exists x0 ∈ B1(0) such
that inf wε = wε(x0), because wε = 1

2(K + ε)ε > 0 on ∂B1(0).

Since ∇2u(x0) is a symmetric matrix, there exist two unit orthogonal
eigenvectors v1, v2 and corresponding eigenvalues λ1, λ2. In particular, the
strict convexity implies λ1, λ2 > 0. Since wε attains its minimum at the
interior point x0, we have

(23) 0 ≤ vTi ∇2wε(x0)vi = vTi
(
∇2u(x0)− (K + ε)I

)
vi = λi − (K + ε),

for each i = 1, 2, where I is the identity matrix. This yields a contradiction
as follows.

(24) f(x0) = det(∇2u)(x0) = λ1λ2 ≥ (K + ε)2 > K2 = sup f.

Namely, wε ≥ 0 holds, and thus passing ε→ 0 complete the proof. �

Second proof of Problem 11. We recall wε and its interior maximum point
x0 in the first proof. Since ∇2wε(x0) is semi-positive definite, we have

0 ≥ det(∇2wε(x0)) = det(∇2u(x0)− (K + ε)I)(25)

= det(∇2u(x0))− (K + ε)∆u(x0) + (K + ε)2.(26)

On the other hand, we have 1
2∆u ≥ (det∇2u)

1
2 =
√
f . Hence,

(27) 0 ≥ f(x0)− 2
√
f(x0)(K + ε) + (K + ε)2 = (K + ε−

√
f(x0))2 ≥ ε2.

Namely, we have wε ≥ 0 by the contradiction above.
�
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Proof of Problem 12. Without loss of generality, we assume Ω ⊂ BR(0) \
B1(0). We recall the heat kernel

(28) K(x, t) = (4πt)−
n
2 e−

|x|2
4t ,

which is continuous in Rn × [0, T ] \ (0, 0), K(x, 0) = 0 for x 6= 0, and K > 0
for t > 0. By the continuity, there exists some constant M such that

(29) M = sup
Ω×[0,T ]

K(x, t).

On the other hand, g > 0 on ∂Ω implies that there exists some ε > 0 such
that inf∂Ω g = ε. Hence, v(x, t) = εM−1K(x, t) satisfies v ≤ u on ∂pQT .
Therefore, by the (weak) maximum principle we have u ≥ v in QT . In
particular, we have v = εM−1v > 0 for t > 0, and therefore u > 0 for
t > 0. �


